Decarbonise Before Assembly


AHS has seen first-hand the vast amounts of carbon build up in the intake manifold and ports when rebuilding diesel engines with EGR Systems on them.

The build-up of carbon in crankcase oil has been a problem for some time, but with common rail engines, usually turbocharged and fitted with EGR valves, carbon is building up in the inlet tract at an alarming rate in some engines.

The carbon build up is caused when “Blow-By” gasses with suspended oil particles from the PVC (Positive Crankcase Ventilation) Valve and exhaust gases from the Exhaust Gas Recirculation (EGR) valve full of soot meet in the intake system. They then combine into a wet sticky mess which slowly builds up on the surfaces of the intake manifolds, intake ports and valves.  Short trips around town and low-temperature operation seem to make the build-up worse, high temperature and highway operations seem not to have this problem as much.

Over time this build up can turn hard and brittle which can break off and pass into the combustion chamber and become wedged in the piston ring lands or get lodged between the piston crown and valves or cylinder head.

This carbon build up must be removed completely from the intake system when either rebuilding the engine or replacing the cylinder head. Failure to do so could lead to engine damage or at least reduced performance.

There are not many shortcuts to carbon removal. Use a hot wash only on metal manifolds without plastic brushes for variable intake valves. A hot wash can damage plastic manifolds and internal parts.

Subaru SA459 Upper Cylinder Engine Cleaner seems to be the best product to loosen the carbon deposits.  Then use a bottle brush to get into the tight places.  See the March 2017 issue of Tech Talk and article on cleaning intake manifolds.

To avoid engine damage ensure that the manifolds and ports are meticulously cleaned prior to the engines assembly.

All Head Services recently had a VW Tiguan 1.4L TSI “Twincharger’ CAVD engine sent in for a rebuild due to low compression on number two cylinder.  The engine was dismantled for inspection, and number two cylinder’s piston rings had worn through the ring land of the piston, and the other three pistons had cracks in the ring lands.

These 1.4L TSI Twincharger engines are based on the EA111 engine family. They were designed on the idea of ‘downsizing’ in which a powerful and very efficient smaller capacity engine can do the same jobs as a larger less efficient engine while consuming less fuel.  In this case with a combination of supercharging, turbocharging and direct fuel injection.  These engines have won the award for best engine in the 1.0L to 1.4L class from 2006 to 2014 and was awarded the best overall International Engine of the year for 2009.  (See Tech Talk July 2007 page 2597 for system overview).

They are used in Volkswagen, Golf, Jetta, Scirocco, Tiguan, EOS, Polo and Passat.  Also the Audi A3, Seat Leon and the Skoda Octavia from 2005 to 2013. They have engine I.D. codes starting with CAV or CTH. However, trouble was coming.

The piston issue surfaced early, and Volkswagen started a service campaign (24S4) in 2010 to reduce its occurrence.  It involved reprograming the ECU with recalibrated settings for the knock sensor.  This may have been helpful; however, there was another problem that Volkswagen could not control.

These engines are designed to run on 95 RON unleaded petrol RON stands for Research Octane Number and the higher octane fuel allows the engine to compress the air/fuel mix to a higher compression ratio before detonation occurs.  This makes the engine more efficient.  However, as you have noticed at the service station, the higher the octane rating, the more expensive the fuel gets.

If the owners of the vehicles run the engine on 91 RON fuel because it is cheaper at the pump, it will cause preignition, detonation or pinging, which are all different names for uncontrolled combustion in the combustion chamber. This is combustion which occurs too early which then tries to force the piston back down the cylinder while it is still on the way up on the compression stroke.

Uncontrolled combustion can occur without any audible noise or knocking from the engine. If it occurs for a prolonged period, it will cause the ring lands to crack, the rings will break, which then start to wear their way through the ring lands (as shown in the pictures).  The first signs of this problem will be some rough running, then misfire related codes, but by this time, the damage has been done. A compression test should be conducted to confirm the issue.

These small, high output engines have been designed to perform very well when all of their requirements are met. You should have a chat with your customers with these engines and encourage them to use 95 RON fuel, as recommended in their owner’s handbook.  Otherwise, the money they think they have saved by buying cheaper fuel, probably will not cover the cost of a rebuilt engine.

 

All Head Services receive regular calls from customers with Multi-Layer Steel (MLS) head gasket sealing issues. This is despite continual technical articles and information being provided regarding the extreme importance of the head gasket surface area needing to be in the correct condition for MLS gaskets to have any chance of sealing. 

MLS gaskets cannot confirm to surface irregularities outside of their specifications, usually 20-30 Ra or Less. RA stands for “Roughness Average” which is the average measurement of peak-to-valley roughness height of a ‘flat’ surface.  The lower the Ra number, the smoother the surface.  Air powered whizzy discs tend to severely damage the gasket surface, by increasing the Ra number, especially on aluminium cylinder blocks.  This will inevitably lead to head gasket leakage and engine failure.

For the average workshop it is recommended to clean the block surface with a spray on gasket cleaner, then a plastic razor blade, then sharp steel razor blade held at 90 degrees to the block which should remove all of the old gasket material.  Then sand the surface with ultra-fine wet and dry paper on a flat sanding block to produce a polished finish.

Aluminium cylinder block gasket surfaces can warp if the engine is severely overheated. Once clean it is recommended to measure the block surface with a flat edge and feeler gauges. The popular rule of thumb is that the combined surface flatness of the head and the block should never exceed the number of cylinders on each bank across the length of the head / block when measured in thousandths of an inch (eg. 3 cylinders = .003″ (0.076mm), 4 cylinders= .004″ (0.102mm), and so on). The measurement across the head or block should not exceed .002″ (0.051mm). If the block surface is out of specification, it will need to be machined or replaced.

There is also the continual use of additional sealants (eg. Hylomer etc.) on the gasket surfaces which will cause the head gasket to leak.  MLS head gaskets already have a sealant applied, and any additional sealant coatings will stop the gaskets from working as it has been designed and it will fail to seal.

I cannot stress enough the importance of block preparation and following of the gasket manufacturer’s instructions when fitting MLS head gaskets to alleviate any chance of failure down the track.  If you have any questions on this topic refer to the Jan/Feb 2017 issue of Teck Talk or contact your gasket supplier.

 

All Head Services sold a customer a set of heads for a VZ V6 Alloytec engine and the customer fitted the heads, and also fitted new timing chain kit while it was apart. When the engine was started, there were no rattles, but the low oil pressure warning came up on the dash display.

A master oil pressure gauge was fitted, and the engine was showing ZERO oil pressure at idle (should be 69 kPa / 10 psi) and 40 psi when revved to 2000 RPM.  The oil pick up was checked with a camera and was clean (the pickups tend to block if the oil becomes sludgy) so the timing cover was removed and the components inspected.

The engines have three timing chains and three timing chain tensioners.  These tensioners are hydraulically actuated via pressurized oil from the engines lubrication system. This keeps the chain slack to a minimum and allows for automatic adjustment. Each tensioner also has an oil jet that sprays oil onto the chains while the engine is running.

All of the tensioners have a small oil reservoir between their body and their mating surface, this allows for quiet and fast operation on start-up. This reservoir of oil is contained by the rubber covered metal gaskets that seals the tensioners to the block or heads.  As this engine was dismantled and the timing chain tensioners removed, it was found that one the tensioners had not had the metal gasket fitted when it was being assembled. This was where the oil pressure was escaping. A new set of gaskets was fitted to the tensioners and the engine was reassembled. The engine had full oil pressure at idle and through the rev range.

As this case shows, one small component can reduce the oil pressure in the entire engine. The lesson from this is to make sure to replace all gaskets on reassembly, and not to assume that because a component is inside the engine that it does not need a gasket or to seal correctly.

The procedure to replace the timing chains on these engines is complicated, requires special tools and must be completed in two stages for the cam timing to be correct.

How much do you need to sell to ensure your business is keeping your the doors open?

By ‘doors open’ we mean break even, the amount of money needed to cover all your expenses – that is, salaries and wages, superannuation, WorkCover, payroll tax, rent & occupancy costs, the phone and then all the consumables, components and freight costs you incur to deliver your product and services to your customer and keep the doors open.

How do you calculate your break even costs?

Let’s look at an example of the yearly profit & loss statement for Awesome Motors – [you should be able to print off your own Profit & Loss Statement from your MYOB, Quick Books or Xero Accounting Software].

Profit & Loss

Awesome Motors [Example]

Income   FY2016
 Interest Income  $1,500
 Sales – Engine Repairs     $450,000
 Sales – Warranty Repairs  $12,500
 Sales – Roadworthy  $25,000
 Total income $489,000
Less Cost of Sales
Total Cost of Sales  $185,000
Gross Profit  $304,000
Gross Margin 62%
Less Operating Expenses
Total Operating Expenses   $248,473
 
Net Profit $55,527
Tax $16,658
Profit After Tax $36,869

 

Calculations:

  • Take the operating expenses (all fixed costs including wages & salaries): $248,473
  • Divide by the gross margin:  62%
  • This equals:  $400,762

The break even for Awesome Motors is $400,762 a year to keep the doors open or to be break even.

NOW divide $400,762 by the total number of days a year you work.  If you’re only working business days, it’s about 250 days a year.

What’s my daily rate?  $400,762 / 250 days = $1,603 each day needs to be invoiced.

TARGET PROFIT

Let’s take it a step further! My view is that the business needs to generate enough income for my family to live the life we want to live.  Thus, I need to be paid for my time, but I also need to generate a return on the money I have invested in my business.

EXAMPLE:  Say we have invested over the life of owning the business, $200,000.  I want to generate a 20% return after tax on my investment which is $40,000 PLUS the salary and the super I get for me working in the business.  We can reverse engineer the calculation above to work out what we need to invoice each day to hit that target profit.

 

Equity in Business      $200,000
Return on Investment  20%
 Target Profit After Tax    $40,000
 Tax Payable (estimate)  $17,143
 Profit Before Tax $57,143
 Divide profit target by 0.7
 Total Operating Expenses   $248,743
Gross Profit Required $305,615
Gross Margin 62%
Total Income $491,599

 

  • Divide $491,599 by 250 work days.
  • To achieve the Target Profit – we need to be invoicing $1,966 per work day.

Now you know your daily profit and the minimum you need to keep the doors open, work out what you need to do to achieve it.

Good Luck.

Graham Van Damme
Owner, All Head Services (Aust) Pty Ltd
Accelerator Trainer, Entrepreneur’s Organisation
www.linkedin.com/in/graham-van-damme

 

All Head Services had a 2RZ cylinder head from a Toyota RZH103 HiAce sent in with an issue of the valve clearances closing up and the customer having to adjust valve clearances at very short intervals due to a misfire and loss of compression.

The valve clearance for this engine is a shim and bucket design, and it is relatively easy to adjust the clearance without removing the camshaft. The cylinder head was dismantled, and when inspected it was found that the valves had recessed into the head causing the valve tip heights to be out of specification.

This engine had been converted to run on LPG which commonly causes the valves to recess into the head, which closes up the valve clearance. To correct the continual closing of the valve clearances, the owner had the shims machined down. Then, the next time they machined the inside of the buckets to gain some extra clearance.

Many engine components are case hardened which means that they have a very hard out layer, but are relatively soft on the inside. Once this outer layer has been worn through, the components will degrade rapidly.  In this case the machining process has broken through the case hardening and has caused the shim to wear through, damaging the buckets and has worn the lobes off the camshaft.

If the valve clearances on any engine continually close up there is usually an underlying issue and a vehicle being run with an out of tune LPG system can be a significant contributor. The cause of this must be investigated to stop further damage.